Capture of bacteria by flexible carbon nanotubes.
نویسندگان
چکیده
Capture of bacteria with flexible carbon nanotubes (CNTs) was done in vitro. Bundles of single-walled carbon nanotubes (SWCNTs) or multi-walled carbon nanotubes (MWCNTs) was mixed with Streptococcus mutans. Precipitation assays and colony-forming unit formation assays showed free S. mutans in the solution was significantly decreased by the addition of the CNTs. Observation of the precipitate by scanning electron microscopy showed bacterial adhesion to CNTs. It has been shown that CNTs of different diameters have significantly different effects on the precipitation efficiency, and the manners in which they capture the cells are different. We found that MWCNTs (diameter of approximately 30 nm) had the highest precipitation efficiency, which was attributable to both their adequate dispersibility and aggregation activity. From observations by scanning electron microscopy, bundles of SWCNTs and thin MWCNTs (diameter of approximately 30 nm), which were moderately flexible, were easily wound around the curved surface of S. mutans. Bare CNTs having high adhesive ability could be useful as biomaterials, e.g., as tools for the elimination of oral pathogens at the nano-level.
منابع مشابه
Separation of Salmonella Typhimurium Bacteria from Water Using MWCNTs Arrays
In this study, Salmonella Typhimurium bacteria removal from polluted water has been investigated using multiwall carbon nanotubes arrays. Experimental results reveal that the contact time, the bacterial concentration and the weight of multiwall carbon nanotubes arrays have positive significant effects on the bacteria removal efficiency. Increasing the contact time and the weight of multiwall ca...
متن کاملFunctionalization of multi-wall carbon nanotubes with Metformin derivatives and study of their antibacterial activities against E-Coli and S. aureus
Bacteria can grow in different materials that are in close contact with humans, foods, etc., so, it is very important to control this matter in order to prevent risk of infections. Antimicrobial resistance (AMR) threatens the effective prevention and treatment of an ever-increasing range of infections caused by bacteria, parasites, viruses and fungi. Multiwall carbon nanotubes (MWNTs) have inte...
متن کاملBacteria capture, concentration and detection by alternating current dielectrophoresis and self-assembly of dispersed single-wall carbon nanotubes.
The high polarizability and dielectrophoretic mobility of single-walled carbon nanotubes (SWNT) are utilized to capture and detect low numbers of bacteria and submicron particles in milliliter-sized samples. Concentrated SWNT solutions are mixed with the sample and a high-frequency (>100 kHz) alternating current (AC) field is applied by a microelectrode array to enhance bulk absorption of the p...
متن کاملBending Analysis of Carbon Nanotubes with Small Initial Curvature Embedded on an Elastic Medium Based on Nonlocal Elasticity and Galerkin Method
Carbon nanotubes have an important role in reinforcing nanocomposits. Many experimental observations have shown that in the most nanostructures such as nanocomposites, carbon nanotubes (CNTs) are often characterized by a certain degree of waviness along their axial direction. In the present paper, the effects of initial curvature, influence of surrounding medium that is modeled as Winkler elast...
متن کاملNovel Platform Development Using an Assembly of Carbon Nanotube, Nanogold and Immobilized RNA Capture Element towards Rapid, Selective Sensing of Bacteria
This study examines the creation of a nano-featured biosensor platform designed for the rapid and selective detection of the bacterium Escherichia coli. The foundation of this sensor is carbon nanotubes decorated with gold nanoparticles that are modified with a specific, surface adherent ribonucleiuc acid (RNA) sequence element. The multi-step sensor assembly was accomplished by growing carbon ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Acta biomaterialia
دوره 5 2 شماره
صفحات -
تاریخ انتشار 2009